Questions are for separate science students only

Q1.

The Mariana Trench is the deepest part of the Pacific Ocean. (Physics only)

Figure 1 shows a submarine going to the bottom of the Mariana Trench.

Figure 1

(a) The depth of the submarine increases.

Explain what happens to the pressure on the submarine.				
—				

(a)	Mariana Trench.		
	The change in pressure was 110 000 kPa.		
	mean density of sea water = 1026 kg/m³		
	gravitational field strength = 9.8 N/kg		
	Calculate the depth of the Mariana Trench.		
	Use the Physics Equations Sheet. (HT only)		
		_	
		<u> </u>	
	Depth =	_ m	(4)
Eart	thquakes often occur at the Mariana Trench.		()
P-wa	aves and S-waves are produced by earthquakes.		
(c)	Which statement describes P-waves and S-waves? (HT only)		
	Tick (✓) one box.		
	Both P-waves and S-waves are longitudinal.		
	Both P-waves and S-waves are transverse.		
	P-waves are longitudinal and S-waves are transverse.		
	P-waves are transverse and S-waves are longitudinal.		
			(1)

(d) Figure 2 shows the layers inside the Earth.

An earthquake occurs at the position shown.

Figure 2

Which letter shows the position where **only** P-waves will be detected?

Give a reason for your answer.

Tick (\checkmark) one box. (HT only)

Yes	No			
Reason				

(2)

(e) An S-wave has a frequency of 3.6 Hz.

The S-wave has a speed of 4.5 km/s.

Calculate the wavelength of this S-wave.

Use the Physics Equations Sheet. (HT only)

Wavelength = _____ m

(f)

A seismometer is a device that detects earthquakes.
P-waves travel at a known speed between an earthquake and a seismometer.
S-waves travel at a slower speed than P-waves.
A P-wave and an S-wave from the earthquake arrive at the seismometer at different times.
Describe the relationship between the distance from the earthquake to the seismometer and the time between the P-wave and the S-wave arriving. (HT only)
(2) (Total 14 marks)

Q2.

(a)

Diving bricks sink to the bottom of a swimming pool. (Physics only)

Figure 1 shows a diving brick.

Figure 1

Swimmers practise diving to the bottom of the swimming pool to pick up the diving brick.

cause the

(b)	When the brick from Figure 1 is at the bottom of the pool, the top surface of the brick is 2.50 m below the surface of the water.
	The force acting on the top surface of the brick due to the weight of the water is 637 N.
	gravitational field strength = 9.8 N/kg
	Calculate the density of the water in the swimming pool.
	Use the Physics Equations Sheet. (HT only)
	Density of water = kg/m ³

(6)

(c) Professional divers are trained in a very deep swimming pool.

The density of the water in this pool is **not** the same as the density of the water in part (b).

The diving brick was dropped into the very deep swimming pool.

When the brick was at a depth of 2.50 m, the force due to the weight of the water on the top surface of the brick was 618 N.

Figure 2 shows the diving brick at the bottom of the very deep swimming pool.

Figure 2

49.9 m

Determine the force due to the weight of the water on the top surface of the brick in **Figure 2**.

Use the Physics Equations Sheet.

Give your answer to 3 significant figures. (HT only)

Force (3 significant figures) = _____N

(3)

(Total 12 marks)